Наверное все из нас пользуются батарейками. Они незаменимы и сфера их применения обширна – от простого будильника или фонаря, до магнитофона. Вряд ли кому-то приходило в голову узнать о том, как появилась эта незаменимая помощница. Именно истории её происхождения и будет посвящена эта статья.
В конце XVII века неожиданно был изобретен первый источник тока. Сделал это итальянский учёный Л. Гальвани. Изначально цель опыта заключалась в том, чтобы узнать о реакции животных на местные раздражители. Но когда к мышечной массе лапки лягушки были присоединены две полоски разных металлов, ученый обнаружил протекание тока между ними. Процесс этот Гальвани объяснил неверно, но это послужило основой для дальнейших исследований еще одного итальянца А. Вольта. Он дал чёткое определение изобретению. Толчком появления тока является реактив химического происхождения, с участием двух металлов. Нехитрое изобретение Вольта из цинка и меди, погружённое в раствор соли – это доказало. Данная конструкция и стала прообразом современной батарейки.
В 1859 г. французский ученый Гастон Плантэ провел исследование, где использовались свинцовые пластины в качестве электродов, а разбавленная серная кислота являлась электролитом. После подключения элемента к источнику питания, происходила зарядка батареи. После этого прибор начинал сам вырабатывать электричество, выдавая при этом всю энергию затраченную на зарядку. При этом проделывать это можно было много раз. Вот так и появился первый свинцовый аккумулятор, который еще долгое время будет применяться в автомобилях.
Усовершенствованный источник питания вовсе не похож на изобретение Вольта, но принцип работы остался тот же. В состав батарейки входит катод с анодом и электролит, который расположен между ними. Выработка электричества происходит в ходе окислительно-восстановительной реакции, которая идёт между электролитами. Выход тока и остальных свойств находится в зависимом состоянии от выбираемых материалов взамен анода и катода, электролита, и от самой конструкции. Элементы питания делятся на первичные и вторичные группы. Для первичных процессов характерны необратимые химические действия, а для вторичных присущи обратимые свойства. Несложно догадаться, что к вторичным процессам относится всем известный аккумулятор, который можно подзарядить и заново использовать. К первичным процессам относится батарейка. После того, как она сядет, её можно будет только выбросить.
Гальванические элементы Лекланше и Даниэля
Химический источник питания, который в 1866 г. изобрёл француз Жорж Лекланше стал прообразом современных «сухих батареек». За альтернативу электродов были взяты марганец и цинк. Электролитом послужил соляной раствор.
Максимальная удельная ёмкость служит главным свойством в создании батареи. Физические параметры и ёмкость определяются, идущими внутри, химическими реакциями. В основе истории батарейки лежит поиск нанотехнологии для улучшения её функций и удобного использования, а также поиск разработки малых размеров.
В настоящий момент есть производство любых составляющих батарейки, вплоть до тех, которые использовались повсеместно в XIX веке.
Типы и виды батарей.
- Сухие батарейки. Состав электролита – хлорид цинка, нашатырь и диоксид марганца. Вместо катода служит уголь электролита и диоксид марганца. Цинк применяют вместо анода.
- Никель-кадмиевые батареи. В состав их входит никелевый анод и кадмиевый катод. Такие аккумуляторы популярны во всём мире. Они выдерживают от пятисот до тысячи зарядок.
- Свинцовые батареи. Большая часть аккумуляторов, которые сделаны из свинца. Широко используются в автомобильной промышленности.
- Литий-ионные батареи. Литий является быстродействующим химическим металлом. Его используют в мобильной технике. Выходное напряжение составляет от полутора вольт почти до трёх с половиной (без одной десятой).
- Литий полимерные зарядные устройства. Подобные элементы используются в компьютерах. Они способны хранить на 22% больше заряда, чем предыдущий вариант.
- Литий-железодисульфидные батареи. Выходное напряжение в два раза меньше 3 вольт. Минусом является то, что их нельзя перезарядить.
Создание устройства, способного аккумулировать энергию, стало по-настоящему прорывным событием. В частности, это изобретение довольно быстро приобрело ключевое значение для автомобильной промышленности. В этом материале мы коротко расскажем об основных вехах истории возникновения и развития аккумулятора.
Вначале был «вольтов столб»
История начинается с итальянского физика Алессандро Вольты, который в 1800 году первым изобрел источник постоянного тока. Он назвал его «вольтов столб». Столб представлял собой стопки кружков цинка и меди, между которыми находилось влажное сукно. И именно эта «конструкция» считается первым гальваническим элементом (или электрической батарейкой)
От Риттера до Фора
Уже через два года немец Иоганн Вильгельм Риттер создал сухой гальванический элемент, а через год продемонстрировал электрическую аккумуляторную батарею. Риттер проводил эксперименты с медными пластинами, помещенными в кислоту, и выяснил, что если их зарядить через гальваническую батарею, они смогут некоторое время отдавать накопленную энергию.
Следующим вклад в разработку аккумуляторов внес немец Вильгельм Зинстеден. Он также проводил опыты, но использовал свинцовые пластины, погруженные в серную кислоту. И хотя ему удалось получить постоянный ток, практическое применение своему изобретению Зинстеден так и не нашел.
А вот француз Гастон Планте как раз в этом и преуспел. Именно он и считается создателем первой перезаряжаемой свинцово-кислотной АКБ. Этот первый аккумулятор состоял из пары свинцовых пластин, которые были помещены в кислотно-водный раствор. Между пластинами проходил слой специальной ткани. Пластины надо было заряжать через гальваническую батарею. После этого аккумулятор мог выдавать весьма большой ток. Однако аккумулятору Планте не хватало емкости. Впрочем, этот недостаток ученый смог исправить — благодаря серии практических экспериментов Планте удалось увеличить слой оксида свинца на пластинах и повысить емкость батареи.
Другой француз, Камиль-Альфонс Фор, поставил изобретение Планте на «коммерческие рельсы» и начал выпуск аккумуляторов. Конечно же, Фор внес свои доработки в конструкцию, которую придумал его соотечественник. В частности, он начал покрывать каждую свинцовую пластину аккумулятора составом из свинцового порошка и серной кислоты. В результате когда батарея заряжалась, на пластинах формировался слой оксидов с пористой структурой, что и обеспечивало высокую емкость батареи. Кстати, Камиль-Альфонс Фор знаменит еще и тем, что в сотрудничестве с инженером Шарлем Жанто создал первый гоночный электромобиль.
АКБ идут в массовое производство
Другой изобретатель, Генри Тюдор, в 80-х годах XIX века получил патент на систему массового производства свинцово-кислотных АКБ. Принято считать, что именно Тюдор и основал европейскую аккумуляторную отрасль.
Часто в контексте истории аккумулятора упоминается и Томас Эдисон. Его заслуга заключается в том, что он постарался адаптировать существовавшие в начале XX века АКБ для использования в транспортной отрасли. В частности, именно он дал старт производству небольших портативных аккумуляторов, которые быстро нашли применение в автомобильном производстве и в судовой промышленности.
XX век: эволюция составов и материалов
В середине прошлого века произошло еще одно знаковое для развития АКБ событие. В легковых автомобилях вместо 6-вольтовых электросистем стали использоваться 12-вольтовые. Одновременно разработчикам удалось уменьшить размеры аккумуляторов и сделать их при этом более прочными. В этом им помогли новые материалы, в частности, полипропилен. В 70-х годах и в последующее время появились необслуживаемые свинцово-кислотные АКБ, а также аккумуляторы с пластинами из медно-кальциевых сплавов; позднее разработчики стали использовать в батареях решетки, сделанные из титановых и алюминиевых сплавов.
Дальнейшее развитие аккумуляторных батарей идет по пути совершенствования используемых для их производства материалов и сырья. На этот процесс влияют и общемировые тренды: ужесточение экологических норм и стандартов, даунсайзинг, повышение топливной экономичности машин, распространение гибридных авто и электрокаров.
Подписывайтесь на нас в других соцсетях:
Мы в Facebook
Мы в Instagram
Мы в Twitter
Сегодня мы отправимся в увлекательную историю развития аккумуляторов, батарей и элементов питания.
Человечество никогда не стояло на месте. С древних времен наших предков интересовал целый спектр всевозможных физических и химических явлений. Ученые постоянно открывали что-то новое. Такое ноу-хау, как правило, сперва напрочь отрицалось наукой, затем о нем забывали, а спустя несколько десятилетий, уже забытого всеми ученого восхваляли и называли «человеком, который изменил мир». Наверняка вы читаете эти строки с устройства, работающего от розетки или имеющего в своем распоряжении один из важнейших элементов – аккумулятор. И если бы 2 700 лет назад древнегреческий философ Фалес не обратил внимание на взаимодействие шерсти и янтаря, если бы в 1600 году не был введен термин электричество, а в 1800 Аллесандро Вольта не заинтересовался пластинами из цинка и меди, возможно современный мир был намного скучнее.
Содержание
- С чего все началось
- Великий Вольт
- Промышленная эра аккумуляторов
- В поисках идеального корпуса
- Настоящее и обозримое будущее
- Алессандро Вольта — Электрическая батарея
- Что такое аккумулятор
- Устройство и принцип работы аккумулятора
- Виды аккумуляторов
- Основные технические характеристики аккумуляторов
- Назначение аккумуляторных батарей
С чего все началось
Наука средневековья – весьма спорное и запутанное явление. Тем не менее, именно существование целого ряда схоластических теорий породило такое понятие, как научно-технический прогресс. До появления первых аккумуляторов пройдет еще более 2,5 тысяч лет, а пока в солнечной Греции дочь философа Фалеса безуспешно пытается очистить янтарное веретено от мелких частичек ворса, ниток и пыли. Как оказалось, смахнуть их не так-то просто.
Во время правления английской королевы Елизаветы I (1533 – 1603) ее лейб-медик Вильям Гильберт Колчестерский всерьез заинтересовался устройством компаса, магнитами, янтарем и прочими драгоценными камнями, которые после натирания мехом притягивали к себе мелкие частички пергамента. Становилось понятным, что несмотря на определенную схожесть, магнетизм и электричество (термин, введенный самим Гильбертом) имеют совершенно разную природу. Магнит способен притягивать исключительно железо, в то время как электричество, вызванное трением, способно к притяжению частичек неметалического происхождения.
Понятие «притяжение» в средневековье относили к категории «магнитов». Все дополняющие друг-друга явления, вроде ветра и мельницы, солнца и тепла, мужчины и женщины относили к магнитам. Ненависти собак и кошек, друзей и врагов, льда и огня приписывали категорию «феамидов», а в магнетизме это понятие подтверждалось северным и южным полюсами магнита. С появлением электричества «магниты» и «феамиды» станут знакомы по маркировкам «плюс» и «минус», которые можно найти на любом аккумуляторе.
В последующих опытах бургомистра Отто Фон Герике в качестве источника электричества использовался шар из серы. Во время вращения его придерживали руками, а скапливающийся электрический заряд передавался металлическому бруску, который в последствии назовут «лейденской банкой» – главный атрибут престижной средневековой лаборатории, который и стал прообразом современного аккумулятора.
После введения понятия электричество в 1600 году и вплоть до начала XIX века по Европе прокатилась буря опытов, связанных с изучением материалов, способных вызывать так называемый «универсальный временный магнетизм». Тем временем во Франции проводил свои эксперимент ученый, имя которого навсегда осталось нераздельно связанным с любым электрическим прибором.
Великий Вольт
Желая понять природу электричества и в прямом смысле слова «почувствовать его вкус», Алессандро Вольта экспериментировал с монетами, изготовленными из разных металлов. Положив одну из них на язык, а другую под, и соединив их проволокой, Вольта отмечал присутствие характерного кисловатого привкуса. Так острота вкусовых рецепторов человека привела к открытию гальванического электричества, явления, которое еще в середине XVIII века описывал итальянский врач, анатом и физик Луиджи Гальвани, проводя опыты по препарированию лягушек.
Следующим шагом стало конструирование первой электрической батареи, принцип работы которой заключался в погружении медных и цинковых пластин, соединенных последовательно, в раствор кислоты. Изобретение первого химического источника тока, полученного в лабораторных условиях, принято датировать 1798 годом, а его автором стал Аллесандро Вольта.
В течение последующих пяти лет в области исследования гальванических батарей начнется настоящий ажиотаж. 1801 год ознаменовался появлением кратковременного источника питания. Проводя опыты, Готеро (франц. физик), используя воду, платиновые электроды и ток, доказал, что даже после прекращения подачи тока, электроды продолжают излучать электричество. Два года спустя, немецкий химик Иоганн Риттер, заменив платиновые электроды на медные и сформировав из них цепочку пластин, переложенных кусками сукна, сконструировал первый вторичный элемент питания – иными словами, первую аккумуляторную батарею, способную сперва накапливать заряд, а потом постепенного его отдавать без участия «гальванической подпитки».
Пятьдесят медных кружков, смоченной в соленом растворе сукно и вольтов столб положили начало эры аккумуляторов с возможностью многократного цикла заряд-разряд. Появляется новая наука – электрохимия. Начатые в 1854 году немецким врачом Вильгельмом Зингстеденом опыты по использованию свинцовых электродов и их поведению в серной кислоте, спустя пять лет вылились в знаменательное открытие французского инженера Гастона Планте. В 1859 году Планте проводил исследования с листовым свинцом, свернутым в трубочку и разделенным полосами сукна. При погружении в подкисленную воду и под действием тока, свинцовые пластины покрывались активным действующим слоем. Многократное пропускание тока приводило к постепенному росту емкости первой свинцово-кислотной батареи, но рутинное осуществление этого трудоемкого процесса (на изготовление требовалось около 500 часов) приводило к росту конечной стоимости аккумулятора. Более того, потенциальный заряд аккумулятора был сравнительно невелик.
Наследие Зингстедена и Планте будет усовершенствовано через 23 года ученным Камиллом Фором, пересмотревшим процесс изготовления используемых в аккумуляторе пластин. Ускорить формирование активного слоя стало возможным благодаря покрытию пластин окислами свинца. Под действием тока вещество превращалось в перекись, а полученные окислы приобретали пористое строение, способствующее аккумулированию газов на электродах.
Параллельно с разработкой и совершенствованием свинцово-кислотных батарей велась работа и над построением «влажных» элементов Лекланше и их преемников угольно-цинковых аккумуляторов, предложенных в 1888 году Карлом Гасснером и использующихся вплоть до сегодняшнего дня.
В течение длительного периода времени аккумуляторы, электрохимия и все, что было связано с использованием кислых сред, пластин и гальванического электричества будоражило умы исключительно ограниченного круга – ученых, физиков, химиков и врачей. Ситуация кардинально изменилась с появлением в 1827 году динамо-машины – первого электрического генератора постоянного тока. Эволюция генераторов, в свою очередь, подталкивала развитие аккумуляторов и батарей. Узкопрофильные опыты Вольта наконец начали получать промышленное применение.
Промышленная эра аккумуляторов
В 1896 году на территории США, в штате Колумбия открывается компания National Carbon Company (NCC). NCC становится первым предприятием специализацией которого становится серийное производство сухих элементов и батарей. В последующие сто лет Национальную Угольную компанию ждет две стадии ребрендинга: сперва NCC станет Eveready, а сегодня мы знаем ее под именем Energizer.
Предложенный Фором метод заполнения пластин в течение продолжительного времени будет являться основой для построения практически любого типа аккумулятора. В поисках альтернативы морально устаревшему (еще по меркам конца XIX века) свинцово-кислотному аккумулятору и попытках решить две основных проблемы этого некогда революционного источника питания (огромный размер и малоэффективная емкость), в 1901 году легендарный изобретатель Томас Эдисон и Вальдмар Юнгнер одновременно патентуют несвинцовый тип батарей: никель-кадмиевых и никель-железных.
Батарея Юнгнера состояла из положительной пластины, изготовленной из никеля. В качестве отрицательной использовался лист кадмия. Значительное повышение емкости, многократное снижение веса и неприхотливость к регулярности подзарядки не смогли выдержать практического применения в связи с дороговизной процесса изготовления никель-кадмиемых аккумуляторов. Достойной заменой стал предложенный Эдисоном никель-железный элемент, который получил имя щелочного аккумулятора.
Развитие эры электричества, появление мощных промышленных генераторов, трансформаторов и глобальная электрификация приводит к резкому росту популярности портативных элементов питания. Щелочные батареи начинают использовать в корабле- и машиностроении, в транспорте и на электростанциях. На улицах появляются первые электромобили, а конструкторы уже успели сформировать принципы построения аккумуляторных батарей с различным вольтажом.
В поисках идеального корпуса
Опыты с электричеством и попытки построения первых батарей нераздельно были связаны с использованием кислоты или кислой водной среды. Любая жидкость для успешного проведения эксперимента требует соответствующий сосуд, а сбор аккумулятора – свой собственный корпус.
В течение продолжительного времени корпус аккумуляторов изготавливался из дерева. Увы, реакции, происходящие в моменты окисления электродов, и кислотная среда батарей приводили к быстрому разрушению органической оболочки. Дерево заменяют на эбонит – каучук с большим содержанием серы, обладающий высокими электроизоляционными свойствами.
Общепринятым стандартом, использующимся при построении составных аккумуляторов начала XX века, было формирование батареи из нескольких элементов, рабочее напряжение которого составляло 2,2 вольта. Первые «пальчиковые батареи» появились еще в далеком 1907 году. С тех пор внешне они мало в чем изменились. Аккумулятор с напряжением в 6 вольт (три элемента по 2,2 В) оставался эталонным при производстве автомобилей вплоть до начала 50-х годов. Элементы на 12 и 24 Вольта имели более узкую специализацию. В первой половине прошлого века об эстетике в машиностроении никто не задумывался, поэтому любой аккумулятор выглядел весьма неряшливо. Эбонитовый корпус с напичканными элементами и грубыми торчащими перемычками намертво заливался мастикой.
Изобретение немецких ученых Шлехта и Аккермана и демонстрация в 1932 году процесса изготовления прессованных пластин для аккумуляторов не могло не повлиять на внешний вид батарей. В 1941 году в производство корпусов вмешивается австрийская компания Baren, проводившая серию экспериментов по разработке синтетических материалов. Через шесть лет француз Нойман предлагает конструкцию герметичного никель-кадмиевого аккумулятора. Параллельно с этим вся промышленность переходит на батареи с напряжением в 12 вольт, а синтетически полученный американской компанией Johnson Controls полипропилен становится основой для изготовления корпуса любых аккумуляторов. Они стали легче, практичнее, перестали бояться ударов и строгих ограничений при подзарядке.
Настоящее и обозримое будущее
Дальнейшее развитие индустрии аккумуляторных батарей движется настолько стремительно, что проследить за той чередой открытий, которые пришлись на последние пятьдесят лет практически невозможно. На сегодняшний день существует более 30 разновидностей аккумуляторов при построении которых используются два различных электрода, чем и определяется их название: никель-цинковые, литий-титанатные, цинк-хлорные. Среди этого обилия в быту мы сталкиваемся лишь с несколькими.
Причина, по которой мобильные устройства начали свою стремительную эволюцию лишь с начала 90-х годов XX века и за последние 35 лет превратились из громоздких и неповоротливых «чемоданов» в ультракомпактные плоские коробочки, кроется именно в элементах питания.
В 1991 году компания Sony выпускает первый литий-ионный аккумулятор. Этот тип портативных батарей пришел на смену некогда широко использовавшимся никель-кадмиевым (Ni-Cd) и никель-металлгидридным (Ni-MH), изобретенных еще в начале прошлого века.
Литий-ионные аккумуляторы имеют целый ряд преимуществ: они заряжаются на порядок быстрее никелевых, имеют более продолжительный срок эксплуатации и большой запас емкости. Li-ion-аккумуляторы получили широкое распространение в сфере портативной электроники, а предложенные инженерами решения позволили не только значительно увеличить максимальные токи разряда, сделавшие возможным использование этого типа аккумуляторов и в среде мощного оборудования, но и обеспечить внушительный рост емкости.
Несмотря на то, что сегодня мы ощущаем некое отсутствие прорыва в области портативных аккумуляторов, вынуждены ежедневно подзаряжать мобильные устройства и жить в режиме «от розетки к розетке», на сложившую ситуацию можно посмотреть и с более положительной стороны.
Одним из главных двигателей прогресса всей индустрии аккумуляторов стали попытки построения электротранспорта в начале позапрошлого столетия. Не стоит забывать, что электромобиль создан значительно раньше двигателя внутреннего сгорания. Внушительные по размеру тяжеловесные свинцово-кислотные батареи продолжают обеспечивать работу троллейбусов, трамваев, электропогрузчиков и тягачей. Бытовые инструменты с никель-кадмиевых элементов постепенно переходят на литий-ионные и литий-полимерные.
Прорыв в сфере использования литиевых аккумуляторов осуществила и компания Tesla, запустившая производство собственной линейки электроавтомобилей (читайте в статье «Революционер индустрии. История компании Tesla»). В конце апреля 2015 года Tesla представила и аккумуляторы для дома – решение для обеспечения автономности за счет получения энергии через солнечные панели. О целесообразности и эффективности данного решения мы поговорим в следующей статье, а пока нам остается надеяться на скорейшее развитие графеновых аккумуляторов. Аккумуляторов, которые уже сегодня называют «убийцами литий-ионного чуда», способных за 8 минут подарить владельцу автомобиля 1000 километров пробега. Увы, эта страница истории пишется в настоящее время. Но долгожданный технологический прорыв близок как никогда.
Интересуетесь историей? Советуем почитать: История развития акустических систем; Революционер индустрии. История компании Tesla; История звукозаписи: от механики к цифре; История портативного звука: эволюция наушников.
(1 голосов, общий 5.00 из 5)
🤓 Хочешь больше? Подпишись на наш Telegramнаш Telegram. … и не забывай читать наш Facebook и Twitter 🍒 iPhones.ru Сегодня мы отправимся в увлекательную историю развития аккумуляторов, батарей и элементов питания. Человечество никогда не стояло на месте. С древних времен наших предков интересовал целый спектр всевозможных физических и химических явлений. Ученые постоянно открывали что-то новое. Такое ноу-хау, как правило, сперва напрочь отрицалось наукой, затем о нем забывали, а спустя несколько десятилетий, уже забытого всеми…
Алессандро Вольта — Электрическая батарея
Изобретя электрическую батарею, Алессандро Вольта сыграл центральную роль в научно-техническом развитии: импульс, данный науке, позволил исследовать электрохимический состав вещества и привел к зарождению электрохимии. Электрическая батарея повсеместно считается величайшим достижением Вольты. Прототип этого устройства, которое он сам называет электродвижущим аппаратом, был разработан в Комо в конце 1799 года и о нем было объявлено в письме от 20 марта 1800 года, собственноручно написанном Вольтой, на имя Дж. Банкса, президента Лондонского Королевского Общества. Электрическая батарея описана как «соединение двух металлов посредством влажного проводника, повторяемое несколько раз, то есть в длинной цепи из этих трех компонентов, соединяемых в том же порядке».
Изобретение электрической батареи было не случайностью, а удивительным результатом многолетних исследований и экспериментов по теории, которую Вольта развил, исходя из контакта двух разных металлов, между которыми образуется электрический заряд. Соединения двух разных металлов, чередующихся с влажными слоями, обеспечивающими связь между парами, и предотвращающими обратное действие, было, по мнению Алессандро Вольта, достаточно, чтобы подтвердить эту теорию.
Лишь позже, с развитием более подходящих электрохимических моделей, это явление будет адекватно описано, придавая основное значение неизвестному Вольте раствору электролита. С помощью батареи становится доступной электрическая энергия – явление, в природе генерируемое только в результате человеческой деятельности. Впоследствии электрохимия уточнит необходимость раствора (влажного элемента Вольты) в батарее, не вступая в противоречие с теорией контакта Вольты.
Принципиально устройство аккумулятора больше чем за 150 лет с момента его изобретения не изменилось, хотя современность внесла серьёзные новшества в технологические процессы их изготовления и используемые материалы, из чего состоит аккумулятор.
Что такое аккумулятор
Аккумулятор – автономный источник электричества, который накапливает, сохраняет и отдает энергию. Аккумуляторная батарея – важный элемент электрооборудования транспортного средства. Назначение акб определяется в запуске двигателя и обеспечении подачи электричества в бортовую сеть. Все электроприборы, когда выключен мотор, и не работает генератор, работают от батареи. Накопитель помогает в пробке, когда энергии генератора не хватает.
Устройство и принцип работы аккумулятора
Для того, чтобы разобраться, как работает аккумулятор, необходимо знать устройство акб, что внутри аккумулятора обеспечивает работу прибора. Основной принцип работы аккумулятора заключается в разности потенциалов при погружении двух пластин в электролит. В 12-ти вольтовой батарее объединены шесть аккумуляторов, каждый из которых вырабатывает 2 вольта. Все они объединены совместным корпусом, который образует единое целое конструкции.
При работе этой конструкции, пластинки из-за действия серной кислоты выделяют сульфат свинца, в результате чего образуется электрический ток. Также выделяется вода, и поэтому концентрация электролита становится менее плотной. Во время зарядки АКБ процесс осуществляется в обратном порядке, свинец снова обретает металлическую форму, электролит становится более концентрированным. Принцип работы аккумулятора основан на методе двойной сульфатации, который позволяет полностью восстанавливать первоначальные свойства батареи. Срок службы аккумулятора зависит от качества используемых материалов, из чего состоит акб.
Схема строения
Виды аккумуляторов
Классификация акб по составу активного вещества
Свинцовые пластины, используемые в старых аккумуляторах перестали устраивать потребителей. Возникала необходимость по улучшению качества работы акб. Сначала добавили сурьму к свинцу, что позволило заметно продлить срок эксплуатации батареи. На следующем этапе – уменьшили процентное содержания сурьмы до оптимальной концентрации. Такой подход привел к созданию малообслуживаемых аккумуляторов, потому что в них уже намного реже требовался долив воды.
При использовании металлического кальция для покрытия пластин появились кальциевые энергосберегающие источники. В предыдущих моделях потери воды из-за электролиза на 12 вольт требовали постоянного долива, а кальций позволил повысить этот порог до 16 вольт. Так появилась возможность в производстве необслуживаемых аккумуляторов использовать герметичный, неразборной корпус.
- Сурьмянистые батареи относятся к классике из-за повышенного состава сурьмы, которая ускоряет процесс электролиза.
- В малосурьмянистых акб материалом для пластин служит свинец с небольшой примесью сурьмы. В них степень саморазряда значительно меньше, чем в сурьмянистых АКБ.
- При производстве кальциевых источников свинцовые пластины легированы до 0,1% кальцием. Они могут иметь различные заряды, как отрицательный, так и положительный.
- Гибридные источники энергии вытесняют кальциевые. Конструктивные отличия состоят в том, что при их производстве объединили две технологии: одна, когда пластины формируются из сплава свинца и сурьмы, положительные электроды, а другая – когда пластины формируются из сплава свинца и кальция, отрицательные электроды.
- EFB является улучшенной жидкозаполненной батареей. Свинцовые пластины в ЕФБ аккумуляторах в два раза толще, чем у обычных, вследствие чего увеличивается их ёмкость. Каждая из пластин закрыта в пакет из специальной ткани, который наполнен жидким сернокислотным электролитом.
- В гелевых аккумуляторах применяется гелеобразный электролит. Такая технология позволила снизить текучесть электролита, в котором содержится агрессивная серная кислота.
- В литиевых акб используется жидкий электролит, представляющий собой раствор фторсодержащих солей лития в смеси эфиров угольной кислоты.
- Отличительной особенностью AGM является то, что в электролит с помощью специальной технологии между пластинами вставляются стекловолоконные микропористые прокладки.
- Во всех щелочных батареях применяется растворенная в воде щёлочь.
Классификация батарей по типу электролита
Электролиты бывают кислотными, щелочными. Щелочные растворы используются в заправке аккумуляторных батарей. Щелочные аккумуляторные жидкости представляют собой сильные основания, которые проявляют большую активность по отношению к металлам и кислотам. При реакциях с кислотами образуются соль и вода. Растворы щелочей подвергаются гидролизу. Химические свойства позволяют использовать этот тип электропроводящей жидкости для накопления электрической энергии в аккумуляторе.
Кислотные смеси с дистиллированной водой применяются в основном в автомобильных аккумуляторах. Такие составы можно приобрести в специализированных магазинах или же приготовить самостоятельно в домашних условиях. На заводе процесс изготовления таких смесей осуществляется в масштабном производстве по ГОСТу. В домашней обстановке также возможно довольно точно при соблюдении обязательных пропорций и правил техники безопасности смешать кислоту с дистиллированной водой.
Важно! вода при минусовых температурах превращается в лед. Всегда при морозе нужно применять меры, необходимые для предотвращения замерзания аккумулятора.
Основные технические характеристики аккумуляторов
Номинальная емкость аккумулятора
Номинальная емкость элемента – способность накапливать и отдавать электроэнергию постоянного тока, определяет время автономной работы ИБП. Емкость электрического аккумулятора показывает время питания подключенной к нему нагрузки.
Важно! Емкость не характеризует полностью энергию аккумулятора, т.е. энергию, которая может быть накоплена в полностью заряженном аккумуляторе. Чем больше напряжение аккумулятора, тем больше накопленная в нем энергия.
Емкость всегда указывается на корпусе АКБ, а также на упаковке, ведь именно по этому критерию большинство пользователей выбирают нужную модель.
Пусковой ток
Величину, характеризующую параметр тока, протекающего в стартере автомобиля в момент пуска силового узла, принято считать пусковым током. Пусковой ток или стартерный возникает в момент, когда в замке зажигания поворачивается ключ и начинает проворачиваться стартер. Единица измерения величины – Ампер. Он же ток холодной прокрутки является показателем, как аккумулятор поведет себя в морозную погоду и сможет запустить двигатель при минусовых показателях. Определяется мощностью тока, которую батарея может выдать в течение первых 30 секунд при температуре -18°С. При высоких показателях пускового тока увеличиваются шансы завести машину при минусовой температуре.
Полярность
Порядок расположения на крышке аккумулятора присоединительных клемм, которые являются токовыводящими соединительными элементами, называется полярностью. Полюса всего два – положительный и отрицательный, вариантов расположения – прямое и обратное.
Прямая полярность – отечественная разработка. Чтобы ее определить, нужно повернуть аккумулятор таким образом, чтобы этикетка была перед глазами. При расположении плюсовой клеммы слева, а минусовой справа, можно утверждать, что акб с прямой полярностью. На иномарках устанавливаются аккумуляторные батареи обратной полярности.
Исполнение корпуса
Корпус большинства аккумуляторов состоит из ударопрочного полипропилена, который характеризуется как материал легкий, не вступающий в химическую реакцию с агрессивным электролитом АКБ. Полипропилен довольно стоек к перепадам температур, возникающих под капотом автомобиля, нагрев может достигать до +60 ̊С, а при морозах до -30°С. Корпус большинства АКБ состоит из ручки для переноса, пробок, индикатора заряда, клемм для подключения к электросети. Вес АКБ емкостью 55Ач около 16,5 кг. Традиционно появились американский, европейский, азиатский и российский типы корпусов.
Европейские корпусы и американские имеют идентичные габариты. Например, у батарей емкостью 60 Ач общая высота от 17,5 до 19 сантиметров. У азиатских этот показатель немного выше, до 22 сантиметров за счет верхнего расположения электродов. Именно поэтому важно корректно анализировать возможности посадочного места под капотом, чтобы надежно закрепить АКБ прижимной планкой и избежать замыкания при случайном касании токоотводами металлических частей кузова.
У АКБ с европейским типом корпуса клеммы находятся в углублении, их верхний край не выступает над плоскостью крышки. Иногда клеммы дополнительно защищены от внешнего воздействия специальными крышечками. Азиатский тип корпуса – это коробка, на которой клеммы расположились на верхней крышке, верхний край клемм является самой высокой точкой аккумулятора. Какую клемму снимать с аккумулятора первой читайте
Важно! При приобретении акб нужно знать, что европейские производители указывают габаритные размеры аккумулятора по корпусу. На азиатских корпусах могут указывать высоту батареи с учетом клемм или без них.
Российский стандарт акб
Обозначение | Описание букв |
А | АКБ имеет общую крышку для всего корпуса |
З | Корпус батареи залит и она является полностью заряженной изначально |
Э | Корпус-моноблок АКБ выполнен из эбонита |
Т | Корпус-моноблок АБК выполнен из термопластика |
М | В корпусе использованы сепараторы типа минпласта из ПВХ |
П | В конструкции использованы полиэтиленовые сепараторы-конверты |
Европейские корпусы и американские имеют идентичные габариты
Тип и размер клемм
Распространены аккумуляторы с клеммами трех разных стандартов: тип Euro – Type 1, и Asia –Type 3, «под болт» – американский стандарт. В типе Euro плюсовая клемма имеет диаметр 19,5 мм, минусовая клемма – 17,9 мм. В типе Asia клемма плюс имеет диаметр 12,7 мм, клемма минусовая – 11,1 мм. Клеммы «под болт» находятся на боковой стенке аккумулятора и сверху. Болт, соединённый с проводом, продевается в отверстие клеммы и фиксируется гайкой.
Тип крепления
При выборе акб особое внимание следует обращать на тип крепления АКБ, при котором батарея может крепиться снизу или сверху. Вверху крепится элемент с помощью специальной монтажной рамки, которая охватывает аккумулятор. Крепление аккумулятора происходит с помощью планки и двух шпилек. Чаще такой вид установки и фиксации аккумуляторной батареи встречается на автомобилях китайского или корейского производства.
Тип крепления встречается на «азиатах»
Нижнее крепление применимо на европейских автомобилях. На нижней части корпуса акб находится выступ, за который аккумулятор прижимается к платформе с помощью пластины и винта.
Назначение аккумуляторных батарей
Автомобильная аккумуляторная батарея выступает как источником электрического тока, необходимого для пуска двигателя, так и резервным источником питания, в случае, если энергии, вырабатываемой генератором, оказывается мало для электроснабжения авто. Аккумуляторная батарея действует как стабилизатор напряжения, так как она выполняет роль накопителя электроэнергии, отдающего во время пуска двигателя за короткое время большой ток, и пополняемого постепенно генератором автомобиля в процессе подзарядки.
Важно! Перед проверкой системы электроснабжения и электрического пуска, необходимо убедиться в том, что аккумуляторная батарея находится в заряженном состоянии и готова к эксплуатации.
В каких сферах используется
Аккумуляторные батареи используются как дополнительный или основной источник питания. Надежность, простота в использовании позволяет применять батареи в различных областях:
- автомобильная промышленность;
- освещение в аварийном состоянии;
- переносное электрооборудование;
- медицинское оборудование;
- игрушки;
- сигнализация в разных сферах применения;
- телекоммуникационное оборудование.
Применение батареи в игрушках
Роль акб в работе приборов не оспорима. Применение источника энергии практически во всех отраслях доказывает значимость и необходимость знаний о внутреннем содержимом батарей. С использованием в автомобилях широкого разнообразия электроприборов, кондиционеров, мультимедийных центров, генераторы не всегда справляются с обеспечением их энергией. В этом случае подпитка энергией поступает от АКБ, который кроме этого выполняет основную функцию, обеспечивает электроэнергией стартер двигателя. Водителю необходимо знать, как устроен аккумулятор, чтобы выявить сбои в работе источника энергии, назначение аккумулятора, чтобы правильно использовать ресурс, подобрать батарею к условиям эксплуатации и автомобилю. О способах и рекомендациях как проверить аккумулятор читай